If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-6m-93=0
a = 1; b = -6; c = -93;
Δ = b2-4ac
Δ = -62-4·1·(-93)
Δ = 408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{408}=\sqrt{4*102}=\sqrt{4}*\sqrt{102}=2\sqrt{102}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-2\sqrt{102}}{2*1}=\frac{6-2\sqrt{102}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+2\sqrt{102}}{2*1}=\frac{6+2\sqrt{102}}{2} $
| Z2=2-3i | | 5(2-x)=-8+22 | | Z1=-3+2i | | 2(2y+7)-3y=12 | | 6x-2=-x+26 | | 3x3=2x+10 | | 1/5(25x)=25 | | 2y^2+28y+96=0 | | 7y=150+2y | | 5x+13=-47-6x | | F(x)=0.4x-5.2 | | 5(8y-2)=7-4(10y+8) | | 10m+6=24 | | 5^2x=8 | | x2+1/2x-3/4=0 | | 56+4x=8x+46 | | -13c+67=184 | | 25x^2-200x+16=0 | | x2+60x+800=0 | | 4x2-10=0 | | -4(8x-7)+18x=31x-2*(90+28x)-45 | | -2m=3m | | x2+13x-42=0 | | (7y+8)÷7=8 | | 7x-7=2+28 | | x2-18x-80=0 | | 4p-6=-2 | | x2+20x+60=0 | | 6x+(3x-17)=4x+3*(4x-1) | | 2z^2-8z-2=0 | | 10x-5+7x-10+8x=2x-6+4x-8 | | 2x+37=617 |